AppLHy!

Prof. Dr. Tabea Arndt

KIT, Institute of Technical Physics, Department of Electrical Engineering and Information Technology, Tabea.Arndt@kit.edu

I. Short Project description:

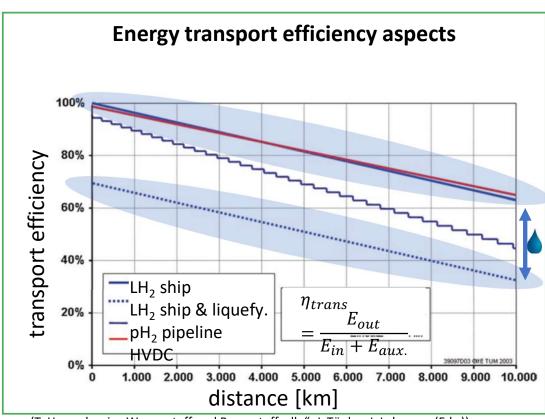
- content: Transport and Application of Liquid Hydrogen (LH₂) efficient liquefaction, hybrid energy transport, synergy of power engineering and LH₂
- duration, budget, partners: 04/2021-03/2025 (plus 2x extensions), ≈16 M€
- framework: part of the German National Hydrogen Strategy (BMBF), Lead project TransHyDE

II. Research focus/core competencies related to project:

- Efficient production and handling of LH₂: liquefaction, containment, transport
- Materials and safety: regulations, instructions, (cryogenic) material testing
- **Power engineering & LH₂**: research & development on synergetic integration of LH2 into efficient and powerful devices (electric power grid components, inverters, transformers,...) and vehicles (eTrucks, eTrains, eShips, eAircrafts)
- **Hybrid energy pipeline:** simultaneous transport of LH2 (chemical energy) & DC electric power (electrical energy)
- Most favourable connecting link of LH2 and power technology: High-Temperature Superconductors (HTS)

III. Relevant infrastructures related to the project:

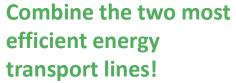
• Liquefaction facility, cryogenic labs for materials, components & power devices, hybrid energy pipeline



AppLHy!

Prof. Dr. Tabea Arndt

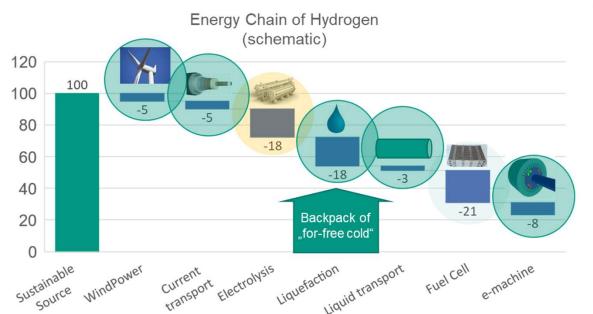
KIT, Institute of Technical Physics, Department of Electrical Engineering and Information Technology, Tabea.Arndt@kit.edu


(T. Hamacher in "Wasserstoff und Brennstoffzelle", J. Töpler, J. Lehmann (Eds.))

Storage	Minimum cost [\$/kg H ₂]	Maximum cost [\$/kg H ₂]
NH ₃	4.4	3.5
LH ₂	3.8	2.0 (3.2)
LOHC	4.4	3.5

efficient energy transport lines!

[Report of Hydrogen Council, McKinsey "Hydrogen Insights", Feb.2021, Exhibit 16]



- * There is substantial loss along the energy chain
- Research is conducted in selected parts:
 - transportation
 - power engineering

KIT AppLHy! Energy Lab 2.0 WBK, (KIT & IAM-ET

- Decrease energy efforts along chain
- Use for-free backpack of cold!
- Design new, record-efficient power devices (e.g. motors & generators)

AppLHy!

Prof. Dr. Tabea Arndt

KIT, Institute of Technical Physics, Department of Electrical Engineering and Information Technology, Tabea. Arndt@kit.edu

IV. Current partners from science and industry

TU Dresden, IFW Dresden, HTW Dresden, KIT ITEP, KIT ITES, KIT ETI, KIT IAM-WK, Linde, SciDre, THEVA, VESC, Amprion*, Daimler Truck AG*, potential others

V. Outlook for future development:

- joining the hybrid energy pipeline with the KIT EnergyLab & a public double-fuel station
- demonstration of vehicles (LH₂) on the closed campus north of KIT
- creating model regions for hybrid energy transport
- aligning a "green H₂ supply" (Chile) and a "green H₂ import need" (Europe)
- connecting LH₂-imports to the ports and systems of Germany (see implementation projects w/i TransHyDE, e.g. Helgoland, Mukran,...)
- strategically working in improvements of the energy chain of (L)H₂ and in power engineering

